Bestimmung der Lichtbrechung: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
|||
Zeile 1: | Zeile 1: | ||
Autoren: [[Benutzer:Hschwarz|Hans-Jürgen Schwarz]], [[Benutzer:AHusen|Anika Husen]] <br> zurück zu [[Polarisationsmikroskopie]] | Autoren: [[Benutzer:Hschwarz|Hans-Jürgen Schwarz]], [[Benutzer:AHusen|Anika Husen]] <br> zurück zu [[Polarisationsmikroskopie]] | ||
Zeile 185: | Zeile 185: | ||
== Literatur == | == Literatur == | ||
< | <biblist/> | ||
[[Category:LichtMikroskopie]] [[Category: | [[Category:LichtMikroskopie]] [[Category:Husen,Anika]] [[Category:Bearbeitung]] [[Category:R-MSteiger]] [[Category:R-CBlaeuer]] |
Version vom 28. Februar 2012, 12:36 Uhr
Autoren: Hans-Jürgen Schwarz, Anika Husen
zurück zu Polarisationsmikroskopie
Zusammenfassung[Bearbeiten]
Lichtbrechung[Bearbeiten]
Die Lichtbrechung eines Kristalles ist durch seine Gittereigenschaften bestimmt und kann mit Hilfe von Immersionsmedien abgeschätzt werden. Dazu wird der Kristall in einer Substanz mit bekannter Lichtbrechung eingebettet. Anhand unterschiedlicher Betrachtungsweisen kann festgestellt werden, ob der Kristall höher oder niedriger lichtbrechend ist als das Immersionsmedium. Mit dem Abgleich mit mehreren bekannten Brechungsindizes kann die Abschätzung des Brechungsindex des Kristalles erfolgen. Dabei ist zu beachten, dass doppelbrechende Kristalle in verschiedener Ausrichtung zu den Polarisatoren unterschiedliche Brechungsindizes aufweisen.
Becke-Linie
Eine Methode zur Bestimmung des höher lichtbrechenden von zwei Materialien ist die Betrachtung der Becke’schen Linie. Bei dieser handelt es sich um einen hellen Lichsaum, der sich beim Defokussieren einer Grenzfläche zeigt. Diese Becke-Linie bewegt sich bei Heben des Tubus/Senken des Objekttisches in das höher brechende Material hinein. Sind die Werte der Lichtbrechung beider Körper gleich, tritt die Becke-Linie nicht auf und je geringer sie sich unterscheiden, desto schwächer ist sie ausgeprägt.
Die Erscheinung der Becke-Linie lässt sich dadurch erklären, dass die Partikelgrenzen von Kristallen selten parallel zum Strahlengang des Lichtes ausgerichtet sind. Durch die geneigte Grenzfläche treten an dieser die Phänomene der Lichtbrechung und Reflexion auf. Durch die so erzeugte Bündelung von Lichtstrahlen wird die Intensität im Grenzflächenbereich erhöht.
Relief
Durch unterschiedliche Lichtbrechung von einem Kristall und seinem Immersionsmedium wird ein optisches Relief erzeugt, wobei das jeweils höher lichtbrechende Material stets höher im Relief erscheint. Je größer die Differenz der jeweiligen Brechungsindizes, desto stärker ist das scheinbare Relief. Der Effekt wird durch die Reflexion des Lichtes an der Grenzfläche hervorgrufen.
Reliefwechsel
Doppelbrechende Kristalle weisen in jeder Betrachtungsrichtung zwei unterschiedliche Brechungsindizes auf, die beim Drehen des Kristalls auf dem Rotationstisch des Polarisationsmikroskopes in die Normalstellung erfaßbar werden. Da bei der Rotation somit stets zwei unterschiedliche Indizes nacheinander durchlaufen werden, ändert sich die Differenz zwischen dem Brechungsindex des Einbettmittels und denen des Kristalls mit der Folge eines sichtbaren Reliefwechsels.
Bezüglich des Reliefs ist also zusammenzufassen: 1. Die Ausprägung des Reliefs eines Kristalls kennzeichnet die Differenz der Brechungsindizes zwischen Immersionsmittel auf der einen Seite und dem Index, bzw. den Indizes eines Kristalls auf der anderen Seite. 2. Ein ausgeprägter Wechsel im Relief eines Kristalls bei der Drehung des Rotationstisches (in polarisiertem Licht) kennzeichnet eine Differenz der beiden Brechungsindizes eines doppelbrechenden Kristalls (also die Doppelbrechung).
Chagrin
Die Bezeichnung Chagrin (franz. Genarbtes Leder) bezieht sich auf die Erscheinung der Oberfläche eines lichtbrechenden Kristalls. Je höher die Differenz der Brechungsindizes von Kristall und Immersionsmittel ist, desto stärker treten Oberflächenstrukturen in Erscheinung.
Schröder van der Kolk - Schatten
"Eine weitere Verfahrensweise zur vergleichenden Indexbestimmung immergierter Partikel ist die Anwendung des sogenannten “Schroeder van der Kolk´sche Kriterium”. Anstelle der parallelen und nicht beeinflussten Lichtführung im Mikroskoptubus beim Becke-Linien-Test, wird zur Erzeugung des “Schroeder van der Kolk-Schattens” die Lichtführung manipuliert. Eine einseitig abgeschwächte Lichtführung, welche die Partikel in schrägem Einfallswinkel durchdringt, kann herbeigeführt werden, wenn man seitlich zwischen Objektiv und Okular ein Hindernis einschiebt. Aus beiden Manipulationen resultiert der Effekt einer deutlichen, am Partikel einseitig auftretenden Schattenbildung immer dann, wenn eine Differenz der Brechungsindizes von Partikel und Medium vorliegt. Entscheidend ist hierbei, dass sich der Schattenwurf im Falle eines höheren Brechungsindex des Partikels nur auf einer Partikelhälfte niederschlägt und vice versa. Es gilt: Ist der Brechungsindex des Partikels größer, als der des Einbettmedium, so liegt der entstandene Schatten auf der Partikelseite, von welcher das Hindernis in den Strahlengang eingebracht wurde. Die naturwissenschaftliche Erklärung für das Phänomen einer einseitigen Schattenbildung im Falle der beschriebenen Manipulation der Beleuchtung am Mikroskop fußt wiederum auf den "Gesetzmäßigkeiten der Lichtbrechung und der Totalreflexion.“(Zitat einfügen)
Lambda-Plättchen[Bearbeiten]
Mit Hilfe des so genannten Lambda-Plättchens/Kompensators kann eine sicherere Bestimmung der Interferenzfarben erfolgen. Dieses Hilfsmittel besteht aus einem Material mit bestimmter Doppelbrechung und kann zusätzlich zu Polarisator und Analysator oberhalb der Probe in den Strahlengang eingebracht werden. Das Lambda-Plättchen ist so hergestellt, dass es die Interferenzfarbe durch seine Doppelbrechung genau um 550 nm, also um den Betrag der Differenz zwischen dem Magenta erster und zweiter Ordnung, verschieben kann. Diese Eigenschaft kann hilfreich sein, wenn zu klären ist, welcher Ordnung eine Interferenzfarbe angehört, weil durch Einschieben des Kompensators die Interferenzfarbe jeweils um eine Ordnung angehoben oder gesenkt wird, je nach Stellung von Kristall und Lambda-Plättchen zueinander. Dabei ändert sich die Intensität des Farbtons und es können durch den Vergleich beide Farbordnungen zugeordnet werden.
Außerdem kann mit Hilfe des Lambda-Plättchens die Richtung des größeren Bechungsindexes ermittelt werden. Dazu wird der Kristall in die Hellstellung gedreht und der Kompensator eingeschoben (dieser muss 45° zu der Horizontallinie haben). Erhöhen sich die Interferenzfarben, ist die höher brechende Richtung des Kristalls parallel zur höher brechenden Richtung des Kompensators. Werden die Interferenzfarben abgesenkt, befindet sich die höher brechende Richtung des Kristalls in der niedriger brechenden des Kompensators und vice versa. Die Richtungen der höheren und nierdrigeren Doppelbrechung vom Lambda-Plättchen sind in der Regel auf diesem angezeichnet.
Immersionsmethode[Bearbeiten]
Für die Arbeit mit der Immersionsmethode müssen unterschiedliche Immersionsmittel mit einer Reihe von Brechungsindizes verfügbar sein. Bei der Salzanalyse haben die Immersionsmittel folgende prinzipielle Anforderungen zu erfüllen:
- Für die Salzanalyse ist es notwendig, den Brechungsindex eines Medium mit einer Genauigkeit von 0.05 zu kennen und zu gewährleisten.
- Aus der Genauigkeitsanforderung resultiert, dass hygroskopische Immersionsmedien (wie z.B. Glycerin) oder Medienmischungen mit unterschiedlich flüchtigen Anteilen nur verwendet werden können, wenn eine Kontrolle des Brechungsindex mittels Refraktometer möglich ist.
- Die Immersionsmittel dürfen die Salzphasen möglichst gar nicht und wenn, dann nur in geringstem Maße anlösen. Somit scheiden alle wasserhaltigen Medien aus.
- Die Immersionsmittel müssen transparent und untoxisch sein und dürfen nicht mit Salzen reagieren.
- Sofern Lösungsmittel als Immersionsmittel verwendet werden, dürfen sie sich nicht zu schnell verflüchtigen (die Verdunstungszahl sollte > 10 sein, der Dampfdruck < 100 hPa betragen).
Brechungsindex nD bei 20°C |
Immersionsmedium (flüchtig) | Immersionsmedium (nicht flüchtig) |
Bemerkungen |
1.32 | Methanol | Bezug: Merck, Okt. 2000 Löst bestimmte Salze. | |
1.35 | Aceton | Bezug: Merck, Okt. 2000 Für mikroskopische Zwecke etwas zu leicht flüchtig. | |
1.36 | Ethanol (absolut) | Bezug: Roth 1999; Index mit Refraktometer gemessen. Löst bestimmte Salze. | |
1.38 | Propanol | Bezug: Roth, 1999; Index mit Refraktometer gemessen. | |
1.388 | n-Heptan | Bezug: Merck, Okt. 2000. | |
1.399 | n-Butanol | Bezug: Roth, 1999; Index mit Refraktometer gemessen. | |
1.41 | n-Amylalkohol | Bezug: Merck, Okt. 2000. | |
1.428 | Petroleum | Apothekenprodukt, Index mit Refraktometer gemessen. | |
1.446 | Chloroform | Bezug: Merck, Okt. 2000. | |
1.45 | Kerosin | Apothekenprodukt, Index mit Refraktometer gemessen. | |
1.455 | Glyzerin | Bezug: Roth, 1999; Index mit Refraktometer gemessen. Löst bestimmte Salze. | |
1.46 | Wallnußöl | Apothekenprodukt, Index mit Refraktometer gemessen. | |
1.465 | Rizinusöl | Apothekenprodukt, Index mit Refraktometer gemessen. | |
1.47 | Terpentinöl | Doppelt rektifiziert, Index mit Refraktometer gemessen. | |
1.474 | Glyzerin (wasserfrei) | Bezug: Merck, Okt. 2000. | |
1.491 | Toluol | Bezug: Merck, Okt. 2000. | |
1.505 | o-Xylol | Bezug: Merck, Okt. 2000. | |
1.513 | Iodoethan | - | Bezug: Merck, Okt. 2000 Für mikroskopische Zwecke etwas zu leicht flüchtig. |
1.516-1.518 | - | Standard-Immersionsöl Zeiss | - |
1.53 | - | Nelkenöl | Apothekenprodukt, Index mit Refraktometer gemessen. |
1.55 | - | Anisöl | Apothekenprodukt, Index mit Refraktometer gemessen.
|
Weblinks[Bearbeiten]
Literatur[Bearbeiten]
[Mainusch:2001] | Mainusch, Nils (2001): Erstellung einer Materialsammlung zur qualitativen Bestimmung bauschädlicher Salze für Fachleute der Restaurierung, Diplomarbeit, HAWK Hochschule für angewandte Wissenschaft und Kunst Hildesheim/Holzminden/Göttingen, file:Diplomarbeit Nils Mainusch.pdf | |
[Raith.etal:2009] | Raith, Michael M.; Raase, Peter (2009): Leitfaden zur Dünnschliffmikroskopie, online Publikation |