Thenardit
Thenardit | |
[[Image:{{{bild}}}|300px]] | |
Mineralogische Salzbezeichnung | Thenardit |
Chemische Bezeichnung | Natriumsulfat |
Trivialname | Makit, Menardit, Pyrotechnit |
Chemische Formel | Na2SO4 |
Hydratformen |
Mirabilit (Na2SO4 • 10H2O), Natriumsulfatheptahydrat (Na2SO4 • 7H2O) |
Kristallklasse | orthorhombisch |
Deliqueszenzfeuchte 20°C | - |
Dichte (g/cm³) | 2,7 |
Molvolumen | 53,11cm3/mol |
Molgewicht | 142,04g/mol |
Transparenz | |
Spaltbarkeit | |
Kristallhabitus | |
Zwillingsbildung | |
Brechungsindices | nx = 1,468; ny = 1,473; nz = 1,483 |
Doppelbrechung | Δ = 0,015 |
Optische Orientierung | |
Pleochroismus | |
Dispersion | |
Phasenübergang | - |
Chemisches Verhalten | |
Bemerkungen | löslich in Wasser und Glycerin, in wasserfreiem Ethanol unlöslich |
Autoren: Hans-Jürgen Schwarz , Nils Mainusch, NN....
Abstract[Bearbeiten]
Einleitung[Bearbeiten]
Allgemeines[Bearbeiten]
Vorkommen von Thenardit
[Bearbeiten]
Sowohl Thenardit wie auch Mirabilit erscheinen als natürliche Mineralien. In Mineralwässern, als Ablagerungen ehemaliger Salzseen und in Form unterschiedlicher Doppelsalze tritt Natriumsulfat in der Natur auf. Die Kenntnis des kristallwasserhaltigen Natriumsulfates reicht nachweislich bis in das 16. Jh. zurück. Erste Beschreibungen desselben sind von Glauber aus dem Jahre 1658 überliefert, welcher es als “sal mirable” bezeichnete. Auf dessen Namen zurückgehend ist auch
die Trivialbezeichnung “Glaubersalz” für Mirabilit in der Literatur anzutreffen.
Angaben zu Herkunft und Bildung von Thenardit an Baudenkmalen
[Bearbeiten]
Durch den Eintrag von Materialien, die lösliche Natriumverbindungen enthalten, kann im mineralischen System eines Baudenkmals Natriumsulfat als Ausblühsalz entstehen, wenn mit schwefeligen Gasen kontaminierte Luft einwirkt oder sonstige Sulfatquellen vorliegen. Einen hohen Gehalt an Natriumionen weisen Zemente auf, in denen nach DIN-Vorgaben bis zu 0,5% lösliche Alkalien enthalten sein dürfen. Rein rechnerisch können 100 kg Portlandzement mit einem Gehalt von lediglich 0,1% löslichem Na2O in schwefelsäurehaltiger Luft 520g Mirabilit ausbilden [Angaben nach Arnold/Zehnder 1991]. Eine Fülle von Reinigungsmaterialien und v.a. früher verwendeten Restaurierungsprodukten (wie Wasserglas) können Natriumionen in Baudenkmäler eintragen. Als weitere Quellen sind Grundwasser und Oberflächenwasser anzuführen, die Na+-Ionen enthalten können. Streusalz besteht zu großem Teil aus leicht löslichem Natriumchlorid. In Küstennähe ist NaCl-haltiges Meerwasser als Natriumquelle zu berücksichtigen.
Angaben zum Schadenspotential und zur Verwitterungsaktivität von Thenardit[Bearbeiten]
Lösungsverhalten[Bearbeiten]
Die an Bauwerken auftretenden Natriumsulfate Thenardit und Mirabilit zählen zur Gruppe der leichtlöslichen und somit leicht mobilisierbaren Salzen (vgl.Tabelle Hygroskopizität der Salze und Gleichgewichtsfeuchte). Die temperaturabhängige Veränderung der Löslichkeit der Natriumsulfate ist groß. Mit dem starken Einfluß der Temperatur auf die Löslichkeit von Thenardit ist die Gefahr einer Lösungsübersättigung bei raschem Temperaturabfall und Kristallisation des Salzes verbunden.
Diagramm 1 - Darstellung der temperaturabhängigen Veränderung der Löslichkeit von Thenardit und Mirabilit im
Vergleich mit anderen Salzphasen [nach Stark/Stürmer 1993].
Hygroskopizität[Bearbeiten]
Im unteren ist der Temperatureinfluß auf die Deliqueszenzpunkte von Thenardit und Mirabilit verdeutlicht. Auffällig sind hierbei die gegenläufigen Kurvengänge.
Diagramm 2 - Deliqueszenzpunkte der Reinsalze Thenardit und Mirabilit [nach Arnold/Zehnder 1991].
In Anwesenheit von Fremdionen (bei Salzgemischen) verändern sich die Parameter der Gleichgewichtsfeuchte und der notwendigen Temperatur- und Feuchtebedingungen für Umkristallisationen zudem deutlich. Als orientierende Daten sind in der unteren Tabelle experimentell erfaßte Werte der Gleichgewichtsfeuchte in unterschiedlichen Salzgemischen wiedergegeben. Es zeigt sich, daß alle Werte der Gleichgewichtsfeuchte unter denen des Reinsalzes Mirabilit liegen.
RF % | MgSO4 | Ca(NO3)2 | KNO3 |
Na2SO4 • 10H2O | 87(21°C) | 74 (21°C) | 81(21°C) |
Tabelle 1 - Angaben der Gleichgewichtsfeuchten über gesättigten Mischlösungen (Mischungsverhältnis: Gesättigte Lsg.A/ gesättigte Lsg.B =1:1) [nach Vogt/Goretzki 1993].
Feuchtesorption:
Als weitere Angabe zur Abschätzung der Hygroskopizität von Natriumsulfaten sind in der nachstehenden Tabelle Werte für das Sorptionsverhalten des Reinsalzes und des Gemisches mit Halit bei unterschiedlichen relativen Feuchten wiedergegeben:
Feuchtsorption in M.% nach 56 Tagen Lagerung bei:
Lagerungsfeuchte | 87% r.F. | 81% r.F. | 79% r.F. |
Na2SO4 |
79 |
0 |
0 |
Na2SO4+NaCl (1:1 molare Mischung) | 157 | 32 | 15 |
Tabelle 2 - Sorptionsverhalten von Natriumsulfat [nach Vogt/Goretzki 1993].
Kristallisationsdruck[Bearbeiten]
Bei der Kristallisation aus wäßriger Lösung läßt sich für Thenardit ein Kristallisationsdruck von 29,2-34,5 N/mm2 angeben. Im Vergleich mit den berechneten Angaben der Kristallisationsdrücke anderer bauschädlichen Salze kann Thenardit einen hohen Kristallisationsdruck aufbauen [nach Winkler 1975].
Hydratationsverhalten[Bearbeiten]
Das System Na2SO4 – H2O:
Als nachweisbare, stabile Hydratstufen existieren lediglich das Anhydrit (Thenardit) und das Dekahydrat (Mirabilit). Die Erzeugung von Mirabilit kann durch Rekristallisation des Salzes aus übersättigter, wäßriger Lösung bei einer Temperatur von unter 32,4°C erfolgen. Insbesondere aufgrund der Hydratstufenbildung, der mit einem Einbau von 10 Wassermolekülen in das Kristallgitter und einer Volumenexpansion von rund 320% verbunden ist und der niedrigen Übergangstemperatur von ca. 32-35°C zählen Natriumsulfate zu den sehr verwitterungsaktiven Schadsalzen. Auch dieser Wert ist als Richtwert zu verstehen. Der Phasenübergang Mirabilit – Thenardit kann bei einer Temperatur von 25 °C bei einer relativen Feuchte von ca. 80% stattfinden, beträgt die Umgebungstemperatur 0°C, so ist ein Übergang bereits bei einer r.F. von 60,7% möglich [Angaben nach Gmelin]. Es zeigt sich also auch hier ein starker Temperatureinfluß. Eine Abschätzung der Schadensaktivität durch Kristallisations- und Hydratationsprozesse der Natriumsulfate wird sich an einem Bauwerk bei varierenden Einflußgrößen also sehr schwierig darstellen, da die Klimaparameter das Verhalten extrem beeinflussen.
Hydratationsdruck[Bearbeiten]
Der Hydratationsdruck, der beim Übergang von Thenardit zu Mirabilit aufgebaut wird, ist stark abhängig von den bestehenden Luftfeuchte- und Temperatur-verhältnissen, was in der nachstehenden Tabelle verdeutlicht ist:
rel. Feuchte % | 20,0 °C | 25,0 °C | 30,0 °C |
100 | 48,9 N/mm2 | 40,5 N/mm2 | 28,9 N/mm2 |
95,0 | 41,3 N/mm2 | 32,7 N/mm2 | 23,3 N/mm2 |
90,0 | 33,5 N/mm2 | 24,9 N/mm2 | 13,7 N/mm2 |
85,0 | 25,5 N/mm2 | 16,0 N/mm2 | 5,1 N/mm2 |
80,0 | 16,4 N/mm2 | 7,8 N/mm2 | 0,0 |
75,0 | 6,7 N/mm2 | 0,0 | - |
Tabelle 3 – Hydratationsdruck Thenardit-Mirabilit [nach Winkler/Wilhelm 1970]
Die Volumenveränderung, die beim Phasenübergang stattfindet, ist mit ca. 320% anzugeben [nach Sperling/Cooke 1980].
Umwandlungsreaktionen[Bearbeiten]
Analytischer Nachweis[Bearbeiten]
Mikroskopie
[Bearbeiten]
Laboruntersuchung:
Durch mikroskopische Beobachtungen des Lösungsverhaltens sind die gute Wasserlöslichkeit und Ethanolunlöslichkeit zu verifizieren. Thenardit und Mirabilit besitzen keine morphologische Charakterisitka, die bei einfachen Rekristallisationsversuchen zur Identifizierung beitragen können. Vielmehr ist eine große Bandbreite unterschiedlichster Erscheinungsformen beobachtbar.
Brechungsindizes: nx = 1,468; ny =1,473; nz =1,483
Doppelbrechung: Δ = 0.015
Kristallklasse: orthorhombisch
Polarisationsmikroskopische Untersuchung:
In Abhängigkeit von den vorliegenden Luftfeuchte- und Temperaturbedingungen verändern Kristalle des Rohprobematerials und des rekristallisierten Präparates ihren Kristallwassergehalt. An trockner Luft (mit r.F. < 80% und Raumtemperatur) verliert Mirabilit sein Kristallwasser und geht in Thenardit über. Dieser Vorgang kann mikroskopisch klar nachvollzogen werden, wenn der Prozeß der Rekristallisation beobachtet wird. Mirabilit weist charakteristische anormale Interferenzfarbe auf, im Zuge des Wasserverlustes und Entstehen von Thenardit schwächen sich die anormalen Interferenzphänomene zunehmend ab.
Die Zuweisung der Brechungsindizes von Thenardit erfolgt entsprechend der Immersionsmethode. Aufgrund der niedrigen maximalen Doppelbrechung zeigt Thenardit zumeist graue Interferenzfarben. Die Auslöschung ist parallel oder symmetrisch.
Verwechslungsmöglichkeiten:
Generell ist die Unterscheidung einer bestimmten Anzahl von Sulfaten (die unten aufgelistet sind und wozu Thenardit zählt) ohne mikrochemische Bestimmung der Anionen problematisch, da die Brechungsindizes der Salze dicht beieinander liegen, und alle Salze eine niedrige Doppelbrechung aufweisen. Hilfreich ist die Verwendung eines Immersionsmittels mit einem nD-Wert von 1,48. Eine Differenzierung innerhalb dieser Gruppe wird damit möglich. Außerdem können die unten genannten Eigenschaften als Abgrenzungskriterien hinzugezogen werden.
Eindeutig bestimmbar wird Thenardit durch die Möglichkeit, nach Auflösung des Probematerials im Zuge der Rekristallisation das Phänomen anormaler Interferezfarben beobachten zu können, sprich Mirabilit in der hohen Hydratstufe zu identifizieren, und somit indirekt Thenardit nachzuweisen.
Salzphase | Unterscheidungsmerkmale zu Thenardit und Mirabilit |
Boussingaultit, (NH4)2Mg(SO)4 • 6H20 | keine anormalen Interferenzfarben / schiefe Auslöschung |
Pikromerit, K2Mg(SO4)2 • 6H20 | keine anormalen Interferenzfarben / schiefe Auslöschung |
Bloedit, Na2Mg(SO4)2 • 6H20 | alle Indizes >1,48 / keine anormalen Interferenzfarben / schiefe Auslöschung / optisch negativ orientiert. |
Glaserit, K3Na(SO4)2 | alle Indizes >1,48 / keine anormalen Interferenzfarben/schiefe Auslöschung |
Arkanit, K2SO4 | alle Indizes >1,48 / keine anormalen Interferenzfarben |
Magnesiumformiat, Mg(HCO2)2 • 2H2O | vergleichsweise hohe Doppelbrechung / keine anormalen Interfernzfarben / schiefe Auslöschung |
Betrachtung von Mischsystemen:
Mischsystem Na+– Ca2+– SO4 2-: Der Ausfall von Gips erfolgt im Zuge der Rekristallisation entsprechend der geringeren Löslichkeit desselben zuerst. Der charakteristische nadelige Habitus von einzelnen Gipskristallen wie auch von Aggregaten bleibt bestehen. Der Ausfall von Natriumsulfat erfolgt später, das eigentliche Kristallwachstum vollzieht sich merklich schneller. Die Morphologie ist unspezifisch.
Mischsystem Na+– SO4 2-– Cl-: Der Ausfall der beiden Partikelsorten beginnt etwa zeitgleich. Halit mit charakteristischer Morphologie, Natriumsulfat in extrem variierender Gestalt.
Röntgendiffraktometrie[Bearbeiten]
Raman-Stektroskopie[Bearbeiten]
DTA/TG[Bearbeiten]
IR-Spektroskopie[Bearbeiten]
Umgang mit Thenarditschäden[Bearbeiten]
Salze und Salzschäden im Bild[Bearbeiten]
Am Objekt[Bearbeiten]
Unter dem Polarisationsmikrokop[Bearbeiten]
- Gips-1.jpg
Gipskristalle unter polarisiertem Licht
- Gips-2.jpg
Gipskristalle unter polarisiertem Licht, Rot I
- Per 270603 5-13 16.jpg
Gipsgeschädigter Ziegel, St. Jakobi Perleberg
Unter dem Rasterelektronenmikroskop[Bearbeiten]
- CaSO4-REM-SG2-1.jpeg
Gipskristalle im REM
- CaSO4-REM-SG2-2.jpeg
Gipskristalle im REM
- CaSO4-REM-SG2-3.jpeg
Gipskristalle im REM
- CaSO4-REM-SG2-SPC.jpeg
Gipskristalle im REM
- CaSO4-REM-SG3-1.jpeg
Gipskristalle im REM
- CaSO4-REM-SG3-2.jpeg
Gipskristalle im REM
- CaSO4-REM-SG3-3.jpeg
Gipskristalle im REM
- CaSO4-REM-SG3-SPC2.jpeg
Gipskristalle im REM
Weblinks
[Bearbeiten]
http://webmineral.com/data/Thenardite.shtml
http://www.mindat.org/min-1784.html
http://www.mineralienatlas.de/lexikon/index.php/MineralData?mineral=Thenardit
Literatur[Bearbeiten]
<bibreferences/>