Cit:Ottosen.etal:2017

Aus Salzwiki
Zur Navigation springen Zur Suche springen
Die druckbare Version wird nicht mehr unterstützt und kann Darstellungsfehler aufweisen. Bitte aktualisieren Sie Ihre Browser-Lesezeichen und verwenden Sie stattdessen die Standard-Druckfunktion des Browsers.
Autor Ottosen, Lisbeth M.; Andersson, Lovisa C. H.
Jahr 2017
Titel Electrode placement during electro-desalination of NaCl contaminated sandstone – simulating treatment of carved stones
Bibtex @inproceedings {Ottosen.etal:2017,

title = {Electrode placement during electro-desalination of NaCl contaminated sandstone – simulating treatment of carved stones}, booktitle = {Proceedings of SWBSS 2017. Fourth International Conference on Salt Weathering of Buildings and Stone Sculptures, University of Applied Sciences Potsdam, Germany, 20-22 September 2017}, year = {2017}, editor = {Laue, Steffen}, pages = {150-157}, month = {september}, organization = {Fachhochschule Potsdam}, publisher = {Verlag der Fachhochschule Potsdam}, note = {fulltext, conference paper}, key = {SWBSS2017}, doi = {10.5165/hawk-hhg/332}, author = {Ottosen, Lisbeth M.; Andersson, Lovisa C. H.} }

DOI 10.5165/hawk-hhg/332
Link Datei:SWBSS 2017 Proceedings 150-157 Ottosen Andersson.pdf
Bemerkungen in: Proceedings of SWBSS 2017 - Fourth International Conference on Salt Weathering of Buildings and Stone Sculptures. University of Applied Sciences, Potsdam, Germany, 20-22 September 2017


Eintrag in der Bibliographie

Abstract[Bearbeiten]

Carved stone sculptures and ornaments can be severely damaged by salt induced decay. Often the irregular surfaces are decomposed, and the artwork is lost. The present paper is an experimental investigation on the possibility for using electro-desalination for treatment of stone with irregular shape with only two electrodes. The used Gotland sandstones were contaminated by NaCl in the laboratory. Due to the relatively good homogeneity in initial salt concentration obtained in this way, interpretation of the ED process were direct. Stones with an up-side-down T-shape formed the core of the investigation. Electro-desalination experiments were made with different duration to follow the progress. Successful desalination of the whole stone piece was obtained, showing that also parts not being placed directly between the electrodes were desalinated. This is important in case of salt damaged carved stones, where the most fragile parts thus can be desalinated without physically placing electrodes on them. The Cl removal rate was higher in the areas closest to the electrodes and slowest in the part, which was not placed directly between the electrodes. This is important to incorporate in the monitoring program to decide when a desalination action is finished.