Thenardit: Unterschied zwischen den Versionen

Aus Salzwiki
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 38: Zeile 38:
|- bgcolor="#dddddd"
|- bgcolor="#dddddd"
| Transparenz  
| Transparenz  
| bgcolor="#99ffaa" |  
| bgcolor="#99ffaa" | <br>
|- bgcolor="#dddddd"
|- bgcolor="#dddddd"
| Spaltbarkeit  
| Spaltbarkeit  
| bgcolor="#99ffaa" |  
| bgcolor="#99ffaa" | <br>
|- bgcolor="#dddddd"
|- bgcolor="#dddddd"
| Kristallhabitus  
| Kristallhabitus  
| bgcolor="#99ffaa" |  
| bgcolor="#99ffaa" | <br>
|- bgcolor="#dddddd"
|- bgcolor="#dddddd"
| Zwillingsbildung  
| Zwillingsbildung  
| bgcolor="#99ffaa" |  
| bgcolor="#99ffaa" | <br>
|- bgcolor="#dddddd"
|- bgcolor="#dddddd"
| Brechungsindices  
| Brechungsindices  
Zeile 71: Zeile 71:
|- bgcolor="#dddddd"
|- bgcolor="#dddddd"
| Bemerkungen  
| Bemerkungen  
| bgcolor="#99ffaa" | in wasserfreiem Ethanol unlöslich, löslich in Glycerin
| bgcolor="#99ffaa" | löslich in Wasser und Glycerin, &nbsp; &nbsp; &nbsp;&nbsp; in wasserfreiem Ethanol unlöslich
|}
|}


Zeile 80: Zeile 80:
= Abstract  =
= Abstract  =


<br>
<br>  


= Einleitung  =
= Einleitung  =


<br>
<br>  


= Allgemeines  =
= Allgemeines  =
Zeile 92: Zeile 92:
== Vorkommen von Thenardit<br>  ==
== Vorkommen von Thenardit<br>  ==


Sowohl Thenardit wie auch [[Mirabilit]] erscheinen als natürliche Mineralien. In Mineralwässern, als Ablagerungen ehemaliger Salzseen und in Form unterschiedlicher Doppelsalze tritt Natriumsulfat in der Natur auf. Die Kenntnis des kristallwasserhaltigen Natriumsulfates reicht nachweislich bis in das 16. Jh. zurück. Erste Beschreibungen desselben sind von Glauber aus dem Jahre 1658 überliefert, welcher es als “sal mirable” bezeichnete. Auf dessen Namen zurückgehend ist auch<br>die Trivialbezeichnung “Glaubersalz” für Mirabilit in der Literatur anzutreffen.
Sowohl Thenardit wie auch [[Mirabilit]] erscheinen als natürliche Mineralien. In Mineralwässern, als Ablagerungen ehemaliger Salzseen und in Form unterschiedlicher Doppelsalze tritt Natriumsulfat in der Natur auf. Die Kenntnis des kristallwasserhaltigen Natriumsulfates reicht nachweislich bis in das 16. Jh. zurück. Erste Beschreibungen desselben sind von Glauber aus dem Jahre 1658 überliefert, welcher es als “sal mirable” bezeichnete. Auf dessen Namen zurückgehend ist auch<br>die Trivialbezeichnung “Glaubersalz” für Mirabilit in der Literatur anzutreffen.  


== <br> Angaben zu Herkunft und Bildung von Thenardit an Baudenkmalen<br>  ==
== <br> Angaben zu Herkunft und Bildung von Thenardit an Baudenkmalen<br>  ==


Durch den Eintrag von Materialien, die lösliche Natriumverbindungen enthalten, kann im mineralischen System eines Baudenkmals Natriumsulfat als Ausblühsalz entstehen, wenn mit schwefeligen Gasen kontaminierte Luft einwirkt oder sonstige Sulfatquellen vorliegen. Einen hohen Gehalt an Natriumionen weisen Zemente auf, in denen nach DIN-Vorgaben bis zu 0,5% lösliche Alkalien enthalten sein dürfen. Rein rechnerisch können 100 kg Portlandzement mit einem Gehalt von lediglich 0,1% löslichem Na<sub>2</sub>O in schwefelsäurehaltiger Luft 520g Mirabilit ausbilden [Angaben nach Arnold/Zehnder 1991]. Eine Fülle von Reinigungsmaterialien und v.a. früher verwendeten Restaurierungsprodukten (wie Wasserglas) können Natriumionen in Baudenkmäler eintragen. Als weitere Quellen sind Grundwasser und Oberflächenwasser anzuführen, die Na<sup>+</sup>-Ionen enthalten können. Streusalz besteht zu großem Teil aus leicht löslichem Natriumchlorid. In Küstennähe ist NaCl-haltiges Meerwasser als Natriumquelle zu berücksichtigen.
Durch den Eintrag von Materialien, die lösliche Natriumverbindungen enthalten, kann im mineralischen System eines Baudenkmals Natriumsulfat als Ausblühsalz entstehen, wenn mit schwefeligen Gasen kontaminierte Luft einwirkt oder sonstige Sulfatquellen vorliegen. Einen hohen Gehalt an Natriumionen weisen Zemente auf, in denen nach DIN-Vorgaben bis zu 0,5% lösliche Alkalien enthalten sein dürfen. Rein rechnerisch können 100 kg Portlandzement mit einem Gehalt von lediglich 0,1% löslichem Na<sub>2</sub>O in schwefelsäurehaltiger Luft 520g Mirabilit ausbilden [Angaben nach Arnold/Zehnder 1991]. Eine Fülle von Reinigungsmaterialien und v.a. früher verwendeten Restaurierungsprodukten (wie Wasserglas) können Natriumionen in Baudenkmäler eintragen. Als weitere Quellen sind Grundwasser und Oberflächenwasser anzuführen, die Na<sup>+</sup>-Ionen enthalten können. Streusalz besteht zu großem Teil aus leicht löslichem Natriumchlorid. In Küstennähe ist NaCl-haltiges Meerwasser als Natriumquelle zu berücksichtigen.  


= Angaben zum Schadenspotential und zur Verwitterungsaktivität von Thenardit  =
= Angaben zum Schadenspotential und zur Verwitterungsaktivität von Thenardit  =
Zeile 151: Zeile 151:
|}
|}


''Tabelle 2 - Sorptionsverhalten von Natriumsulfat [nach Vogt/Goretzki 1993].''
''Tabelle 2 - Sorptionsverhalten von Natriumsulfat [nach Vogt/Goretzki 1993].''  


== Kristallisationsdruck  ==
== Kristallisationsdruck  ==


Bei der Kristallisation aus wäßriger Lösung läßt sich für Thenardit ein Kristallisationsdruck von 29,2-34,5 N/mm<sup>2</sup> angeben. Im Vergleich mit den berechneten Angaben der Kristallisationsdrücke anderer bauschädlichen Salze kann Thenardit einen hohen Kristallisationsdruck aufbauen [nach Winkler 1975].
Bei der Kristallisation aus wäßriger Lösung läßt sich für Thenardit ein Kristallisationsdruck von 29,2-34,5 N/mm<sup>2</sup> angeben. Im Vergleich mit den berechneten Angaben der Kristallisationsdrücke anderer bauschädlichen Salze kann Thenardit einen hohen Kristallisationsdruck aufbauen [nach Winkler 1975].  


== Hydratationsverhalten  ==
== Hydratationsverhalten  ==
Zeile 161: Zeile 161:
Das System Na<sub>2</sub>SO<sub>4</sub> – H<sub>2</sub>O:  
Das System Na<sub>2</sub>SO<sub>4</sub> – H<sub>2</sub>O:  


Als nachweisbare, stabile Hydratstufen existieren lediglich das Anhydrit (Thenardit) und das Dekahydrat ([[Mirabilit]]). Die Erzeugung von Mirabilit kann durch Rekristallisation des Salzes aus übersättigter, wäßriger Lösung bei einer Temperatur von unter 32,4°C erfolgen. Insbesondere aufgrund der Hydratstufenbildung, der mit einem Einbau von 10 Wassermolekülen in das Kristallgitter und einer Volumenexpansion von rund 320% verbunden ist und der niedrigen Übergangstemperatur von ca. 32-35°C zählen Natriumsulfate zu den sehr verwitterungsaktiven Schadsalzen. Auch dieser Wert ist als Richtwert zu verstehen. Der Phasenübergang Mirabilit – Thenardit kann bei einer Temperatur von 25 °C bei einer relativen Feuchte von ca. 80%&nbsp; stattfinden, beträgt die Umgebungstemperatur 0°C, so ist ein Übergang bereits bei einer r.F. von 60,7% möglich [Angaben nach Gmelin]. Es zeigt sich also auch hier ein starker Temperatureinfluß. Eine Abschätzung der Schadensaktivität durch Kristallisations- und Hydratationsprozesse der Natriumsulfate wird sich an einem Bauwerk bei varierenden Einflußgrößen also sehr schwierig darstellen, da die Klimaparameter das Verhalten extrem beeinflussen.
Als nachweisbare, stabile Hydratstufen existieren lediglich das Anhydrit (Thenardit) und das Dekahydrat ([[Mirabilit]]). Die Erzeugung von Mirabilit kann durch Rekristallisation des Salzes aus übersättigter, wäßriger Lösung bei einer Temperatur von unter 32,4°C erfolgen. Insbesondere aufgrund der Hydratstufenbildung, der mit einem Einbau von 10 Wassermolekülen in das Kristallgitter und einer Volumenexpansion von rund 320% verbunden ist und der niedrigen Übergangstemperatur von ca. 32-35°C zählen Natriumsulfate zu den sehr verwitterungsaktiven Schadsalzen. Auch dieser Wert ist als Richtwert zu verstehen. Der Phasenübergang Mirabilit – Thenardit kann bei einer Temperatur von 25 °C bei einer relativen Feuchte von ca. 80%&nbsp; stattfinden, beträgt die Umgebungstemperatur 0°C, so ist ein Übergang bereits bei einer r.F. von 60,7% möglich [Angaben nach Gmelin]. Es zeigt sich also auch hier ein starker Temperatureinfluß. Eine Abschätzung der Schadensaktivität durch Kristallisations- und Hydratationsprozesse der Natriumsulfate wird sich an einem Bauwerk bei varierenden Einflußgrößen also sehr schwierig darstellen, da die Klimaparameter das Verhalten extrem beeinflussen.  


== Hydratationsdruck  ==
== Hydratationsdruck  ==
Zeile 207: Zeile 207:
''Tabelle 3 – Hydratationsdruck Thenardit-Mirabilit [nach Winkler/Wilhelm 1970] ''  
''Tabelle 3 – Hydratationsdruck Thenardit-Mirabilit [nach Winkler/Wilhelm 1970] ''  


Die Volumenveränderung, die beim Phasenübergang stattfindet, ist mit ca. 320% anzugeben [nach Sperling/Cooke 1980].
Die Volumenveränderung, die beim Phasenübergang stattfindet, ist mit ca. 320% anzugeben [nach Sperling/Cooke 1980].  


== Umwandlungsreaktionen  ==
== Umwandlungsreaktionen  ==


<br>
<br>  


<br>
<br>  


= Analytischer Nachweis  =
= Analytischer Nachweis  =
Zeile 225: Zeile 225:
<br>  
<br>  


'''Polarisationsmikroskopische Untersuchung:'''<br>Außer dem typischen, nadeligen Habitus von Gipskristallen (v.a. von rekristallisiertem Material) treten unterschiedliche morphologische Charakteristika auf, die bei der Identifikation von Gips hilfreich sind. Gipspartikel (in Rohprobematerial) zeigen sich häufig in Form von gerundeten Splittern und tafeligen Rhomboedern, an denen deutliche, innere Spaltflächen ablesbar sind. Darüber hinaus ist das Auftreten von Zwillingsformen sowohl bei lattigen Partikeln wie auch Tafeln und Plättchen typisch für Gips.<br>Die Zuweisung der Brechungsindizes erfolgen entsprechend der Immersionsmethode unter Verwendung von Medien mit den Indizes nD=1,518 und nD=1,53, wobei aufgrund der zumeist sehr kleinteiligen Partikel die Überprüfung des Schroeder van der Kolk- Schatten aussagekräftiger und sicherer ist, als der Becke-Linien Test.
'''Polarisationsmikroskopische Untersuchung:'''<br>  


<br>Gipskristalle gehören zur Klasse der monoklinen Kristalle zeigen also je nach Ausrichtung des Einzelpartikels unter dem Mikroskop zum einen sowohl parallele, bzw. symmetrische Auslöschung, weisen v.a. jedoch eine charakteristische schiefe Achsenstellung in der Auslöschungsposition auf. An gut ausgebildeten Kristallrhomben ist diese schiefe Auslöschung zumeist klar meßbar.<br>Von allen Calciumsulfaten ist Gips am geringsten doppelbrechend und erscheint bei gekreuzten Polarisatoren mit sehr niedrigen Interferenzfarben, die (natürlich in Abhängigkeit der vorliegenden Partikeldicke) im Bereich grau bis gelblich weiß der ersten Ordnung liegen.<br>
In Abhängigkeit von den vorliegenden Luftfeuchte- und Temperaturbedingungen verändern Kristalle des Rohprobematerials und des rekristallisierten Präparates ihren Kristallwassergehalt. An trockner Luft (mit r.F. &lt; 80% und Raumtemperatur) verliert Mirabilit sein Kristallwasser und geht in Thenardit über. Dieser Vorgang kann mikroskopisch klar nachvollzogen werden, wenn der Prozeß der Rekristallisation beobachtet wird. Mirabilit weist charakteristische anormale Interferenzfarbe auf, im Zuge des Wasserverlustes und Entstehen von Thenardit schwächen sich die anormalen Interferenzphänomene zunehmend ab.<br><br>Die Zuweisung der Brechungsindizes von Thenardit erfolgt entsprechend der Immersionsmethode. Aufgrund der niedrigen maximalen Doppelbrechung zeigt Thenardit zumeist graue Interferenzfarben. Die Auslöschung ist parallel oder symmetrisch.


<br>'''Verwechslungsmöglichkeiten:'''<br>Gips ist im dargestellten Analyseverfahren eindeutig zuweisbar, sofern die folgenden Untersuchungskriterien eindeutig geklärt sind:<br>
<br>'''Verwechslungsmöglichkeiten:'''Generell ist die Unterscheidung einer bestimmten Anzahl von Sulfaten (die unten aufgelistet sind und wozu Thenardit zählt) ohne mikrochemische Bestimmung der Anionen problematisch, da die Brechungsindizes der Salze dicht beieinander liegen, und alle Salze eine niedrige Doppelbrechung aufweisen. Hilfreich ist die Verwendung eines Immersionsmittels mit einem nD-Wert von 1,48. Eine Differenzierung innerhalb dieser Gruppe wird damit möglich. Außerdem können die unten genannten Eigenschaften als Abgrenzungskriterien hinzugezogen werden. Eindeutig bestimmbar wird Thenardit durch die Möglichkeit, nach Auflösung des Probematerials im Zuge der Rekristallisation das Phänomen anormaler Interferezfarben beobachten zu können, sprich Mirabilit in der hohen Hydratstufe zu identifizieren, und somit indirekt Thenardit nachzuweisen. Salzphase Unterscheidungsmerkmale zu Thenardit und Mirabilit Boussingaultit, (NH4)2Mg(SO)4 6H20 keine anormalen Interferenzfarben/schiefe Auslöschung Pikromerit, K2Mg(SO4)2 6H20 keine anormalen Interferenzfarben/schiefe Auslöschung Bloedit, Na2Mg(SO4)2 6H20 alle Indizes&gt;1,48/keine anormalen Interferenzfarben/schiefe Auslöschung/optisch negativ orientiert. Glaserit, K3Na(SO4)2 alle Indizes&gt;1,48/keine anormalen Interferenzfarben/schiefe Auslöschung Arkanit, K2SO4 alle Indizes&gt;1,48/keine anormalen Interferenzfarben Magnesiumformiat, Mg(HCO2)2 2H2O vergleichsweise hohe Doppelbrechung/ keine anormalen Interfernzfarben/ schiefe Auslöschung. Betrachtung von Mischsystemen Im Rahmen der Diplomarbeit wurde der Einfluß von Fremdionen auf das Rekristallisationsverhalten von Thenardit in den Mischsystemen Na+-Ca2+-SO4 2- (Gips und Thenardit) und Na+-SO4 2—Cl- (Thenardit und Halit) untersucht. Mischsystem Na+-Ca2+-SO4 2-: Der Ausfall von Gips erfolgt im Zuge der Rekristallisation entsprechend der geringeren Löslichkeit desselben zuerst. Der charakteristische nadelige Habitus von einzelnen Gipskristallen wie auch von Aggregaten bleibt bestehen. Der Ausfall von Natriumsulfat erfolgt später, das eigentliche Kristallwachstum vollzieht sich merklich schneller. Die Morphologie ist unspezifisch. Mischsystem Na+- SO4 2+ – Cl-: Der Ausfall der beiden Partikelsorten beginnt etwa zeitgleich. Halit mit charakteristischer Morphologie, Natriumsulfat in extrem variierender Gestalt.
 
*geringe Wasserlöslichkeit
*charakteristisch nadelige Morphologie bei rekristallisierten Partikeln
*alle beobachtbaren Indizes besitzen einen n<sub>D</sub> –Wert zwischen 1,518 und 1,530
*Gipskristalle besitzen eine geringe Doppelbrechung und niedrige Interferenzfarben
*Gipskristalle weisen eine schiefe Auslöschung auf
 
Salzphasen, die gipsähnliche chemische und optische Eigenschaften aufweisen, sind nachstehend<br>aufgelistet:<br>


{| width="100%" cellspacing="0" cellpadding="4" border="2"
{| width="100%" cellspacing="0" cellpadding="4" border="2"
Zeile 254: Zeile 246:
|}
|}


<br>
<br>  


== Röntgendiffraktometrie  ==
== Röntgendiffraktometrie  ==

Version vom 19. September 2009, 12:24 Uhr

Thenardit
[[Image:{{{bild}}}|300px]]
Mineralogische Salzbezeichnung Thenardit
Chemische Bezeichnung Natriumsulfat
Trivialname Makit, Menardit, Pyrotechnit
Chemische Formel Na2SO4
Hydratformen

Mirabilit (Na2SO4 • 10H2O),             Natriumsulfatheptahydrat     (Na2SO4 • 7H2O)

Kristallklasse orthorhombisch
Deliqueszenzfeuchte 20°C -
Dichte (g/cm³) 2,7
Molvolumen 53,11cm3/mol
Molgewicht 142,04g/mol
Transparenz
Spaltbarkeit
Kristallhabitus
Zwillingsbildung
Brechungsindices nx = 1,468; ny = 1,473;  nz = 1,483
Doppelbrechung Δ = 0,015
Optische Orientierung
Pleochroismus
Dispersion
Phasenübergang -
Chemisches Verhalten
Bemerkungen löslich in Wasser und Glycerin,        in wasserfreiem Ethanol unlöslich



Autoren: Hans-Jürgen Schwarz , Nils Mainusch, NN....

Abstract[Bearbeiten]


Einleitung[Bearbeiten]


Allgemeines[Bearbeiten]


Vorkommen von Thenardit
[Bearbeiten]

Sowohl Thenardit wie auch Mirabilit erscheinen als natürliche Mineralien. In Mineralwässern, als Ablagerungen ehemaliger Salzseen und in Form unterschiedlicher Doppelsalze tritt Natriumsulfat in der Natur auf. Die Kenntnis des kristallwasserhaltigen Natriumsulfates reicht nachweislich bis in das 16. Jh. zurück. Erste Beschreibungen desselben sind von Glauber aus dem Jahre 1658 überliefert, welcher es als “sal mirable” bezeichnete. Auf dessen Namen zurückgehend ist auch
die Trivialbezeichnung “Glaubersalz” für Mirabilit in der Literatur anzutreffen.


Angaben zu Herkunft und Bildung von Thenardit an Baudenkmalen
[Bearbeiten]

Durch den Eintrag von Materialien, die lösliche Natriumverbindungen enthalten, kann im mineralischen System eines Baudenkmals Natriumsulfat als Ausblühsalz entstehen, wenn mit schwefeligen Gasen kontaminierte Luft einwirkt oder sonstige Sulfatquellen vorliegen. Einen hohen Gehalt an Natriumionen weisen Zemente auf, in denen nach DIN-Vorgaben bis zu 0,5% lösliche Alkalien enthalten sein dürfen. Rein rechnerisch können 100 kg Portlandzement mit einem Gehalt von lediglich 0,1% löslichem Na2O in schwefelsäurehaltiger Luft 520g Mirabilit ausbilden [Angaben nach Arnold/Zehnder 1991]. Eine Fülle von Reinigungsmaterialien und v.a. früher verwendeten Restaurierungsprodukten (wie Wasserglas) können Natriumionen in Baudenkmäler eintragen. Als weitere Quellen sind Grundwasser und Oberflächenwasser anzuführen, die Na+-Ionen enthalten können. Streusalz besteht zu großem Teil aus leicht löslichem Natriumchlorid. In Küstennähe ist NaCl-haltiges Meerwasser als Natriumquelle zu berücksichtigen.

Angaben zum Schadenspotential und zur Verwitterungsaktivität von Thenardit[Bearbeiten]

Lösungsverhalten[Bearbeiten]

Die an Bauwerken auftretenden Natriumsulfate Thenardit und Mirabilit zählen zur Gruppe der leichtlöslichen und somit leicht mobilisierbaren Salzen (vgl.Tabelle Hygroskopizität der Salze und Gleichgewichtsfeuchte). Die temperaturabhängige Veränderung der Löslichkeit der Natriumsulfate ist groß. Mit dem starken Einfluß der Temperatur auf die Löslichkeit von Thenardit ist die Gefahr einer Lösungsübersättigung bei raschem Temperaturabfall und Kristallisation des Salzes verbunden.

Diagramm 1 - Darstellung der temperaturabhängigen Veränderung der Löslichkeit von Thenardit und Mirabilit im
Vergleich mit anderen Salzphasen [nach Stark/Stürmer 1993].

Hygroskopizität[Bearbeiten]

Im unteren ist der Temperatureinfluß auf die Deliqueszenzpunkte von Thenardit und Mirabilit verdeutlicht. Auffällig sind hierbei die gegenläufigen Kurvengänge.

Diagramm 2 - Deliqueszenzpunkte der Reinsalze Thenardit und Mirabilit [nach Arnold/Zehnder 1991].

In Anwesenheit von Fremdionen (bei Salzgemischen) verändern sich die Parameter der Gleichgewichtsfeuchte und der notwendigen Temperatur- und Feuchtebedingungen für Umkristallisationen zudem deutlich. Als orientierende Daten sind in der unteren Tabelle experimentell erfaßte Werte der Gleichgewichtsfeuchte in unterschiedlichen Salzgemischen wiedergegeben. Es zeigt sich, daß alle Werte der Gleichgewichtsfeuchte unter denen des Reinsalzes Mirabilit liegen.

 RF %    MgSO4   Ca(NO3)2   KNO3
 Na2SO4 • 10H2O   87(21°C)   74 (21°C)  81(21°C)

Tabelle 1 - Angaben der Gleichgewichtsfeuchten über gesättigten Mischlösungen (Mischungsverhältnis: Gesättigte Lsg.A/ gesättigte Lsg.B =1:1) [nach Vogt/Goretzki 1993].

Feuchtesorption:

Als weitere Angabe zur Abschätzung der Hygroskopizität von Natriumsulfaten sind in der nachstehenden Tabelle Werte für das Sorptionsverhalten des Reinsalzes und des Gemisches mit Halit bei unterschiedlichen relativen Feuchten wiedergegeben:

Feuchtsorption in M.% nach 56 Tagen Lagerung bei:

Lagerungsfeuchte   87% r.F.   81% r.F.   79% r.F.
Na2SO4
     79
     0
     0
Na2SO4+NaCl (1:1 molare Mischung)     157     32     15

Tabelle 2 - Sorptionsverhalten von Natriumsulfat [nach Vogt/Goretzki 1993].

Kristallisationsdruck[Bearbeiten]

Bei der Kristallisation aus wäßriger Lösung läßt sich für Thenardit ein Kristallisationsdruck von 29,2-34,5 N/mm2 angeben. Im Vergleich mit den berechneten Angaben der Kristallisationsdrücke anderer bauschädlichen Salze kann Thenardit einen hohen Kristallisationsdruck aufbauen [nach Winkler 1975].

Hydratationsverhalten[Bearbeiten]

Das System Na2SO4 – H2O:

Als nachweisbare, stabile Hydratstufen existieren lediglich das Anhydrit (Thenardit) und das Dekahydrat (Mirabilit). Die Erzeugung von Mirabilit kann durch Rekristallisation des Salzes aus übersättigter, wäßriger Lösung bei einer Temperatur von unter 32,4°C erfolgen. Insbesondere aufgrund der Hydratstufenbildung, der mit einem Einbau von 10 Wassermolekülen in das Kristallgitter und einer Volumenexpansion von rund 320% verbunden ist und der niedrigen Übergangstemperatur von ca. 32-35°C zählen Natriumsulfate zu den sehr verwitterungsaktiven Schadsalzen. Auch dieser Wert ist als Richtwert zu verstehen. Der Phasenübergang Mirabilit – Thenardit kann bei einer Temperatur von 25 °C bei einer relativen Feuchte von ca. 80%  stattfinden, beträgt die Umgebungstemperatur 0°C, so ist ein Übergang bereits bei einer r.F. von 60,7% möglich [Angaben nach Gmelin]. Es zeigt sich also auch hier ein starker Temperatureinfluß. Eine Abschätzung der Schadensaktivität durch Kristallisations- und Hydratationsprozesse der Natriumsulfate wird sich an einem Bauwerk bei varierenden Einflußgrößen also sehr schwierig darstellen, da die Klimaparameter das Verhalten extrem beeinflussen.

Hydratationsdruck[Bearbeiten]

Der Hydratationsdruck, der beim Übergang von Thenardit zu Mirabilit aufgebaut wird, ist stark abhängig von den bestehenden Luftfeuchte- und Temperatur-verhältnissen, was in der nachstehenden Tabelle verdeutlicht ist:

 rel. Feuchte %     20,0 °C     25,0 °C     30,0 °C
   100  48,9 N/mm2   40,5 N/mm2  28,9 N/mm2
   95,0  41,3 N/mm2  32,7 N/mm2  23,3 N/mm2
   90,0  33,5 N/mm2  24,9 N/mm2  13,7 N/mm2
   85,0  25,5 N/mm2  16,0 N/mm2   5,1 N/mm2
   80,0  16,4 N/mm2  7,8 N/mm2      0,0
   75,0   6,7 N/mm2        0,0   -

Tabelle 3 – Hydratationsdruck Thenardit-Mirabilit [nach Winkler/Wilhelm 1970]

Die Volumenveränderung, die beim Phasenübergang stattfindet, ist mit ca. 320% anzugeben [nach Sperling/Cooke 1980].

Umwandlungsreaktionen[Bearbeiten]



Analytischer Nachweis[Bearbeiten]

Mikroskopie
[Bearbeiten]

Laboruntersuchung:
Durch mikroskopische Beobachtungen des Lösungsverhaltens sind die gute Wasserlöslichkeit und Ethanolunlöslichkeit zu verifizieren. Thenardit und Mirabilit besitzen keine morphologische Charakterisitka, die bei einfachen Rekristallisationsversuchen zur Identifizierung beitragen können. Vielmehr ist eine große Bandbreite unterschiedlichster Erscheinungsformen beobachtbar.

Brechungsindizes:    nx = 1,468; ny =1,473; nz =1,483
Doppelbrechung:      Δ = 0.015
Kristallklasse:            orthorhombisch


Polarisationsmikroskopische Untersuchung:

In Abhängigkeit von den vorliegenden Luftfeuchte- und Temperaturbedingungen verändern Kristalle des Rohprobematerials und des rekristallisierten Präparates ihren Kristallwassergehalt. An trockner Luft (mit r.F. < 80% und Raumtemperatur) verliert Mirabilit sein Kristallwasser und geht in Thenardit über. Dieser Vorgang kann mikroskopisch klar nachvollzogen werden, wenn der Prozeß der Rekristallisation beobachtet wird. Mirabilit weist charakteristische anormale Interferenzfarbe auf, im Zuge des Wasserverlustes und Entstehen von Thenardit schwächen sich die anormalen Interferenzphänomene zunehmend ab.

Die Zuweisung der Brechungsindizes von Thenardit erfolgt entsprechend der Immersionsmethode. Aufgrund der niedrigen maximalen Doppelbrechung zeigt Thenardit zumeist graue Interferenzfarben. Die Auslöschung ist parallel oder symmetrisch.


Verwechslungsmöglichkeiten:Generell ist die Unterscheidung einer bestimmten Anzahl von Sulfaten (die unten aufgelistet sind und wozu Thenardit zählt) ohne mikrochemische Bestimmung der Anionen problematisch, da die Brechungsindizes der Salze dicht beieinander liegen, und alle Salze eine niedrige Doppelbrechung aufweisen. Hilfreich ist die Verwendung eines Immersionsmittels mit einem nD-Wert von 1,48. Eine Differenzierung innerhalb dieser Gruppe wird damit möglich. Außerdem können die unten genannten Eigenschaften als Abgrenzungskriterien hinzugezogen werden. Eindeutig bestimmbar wird Thenardit durch die Möglichkeit, nach Auflösung des Probematerials im Zuge der Rekristallisation das Phänomen anormaler Interferezfarben beobachten zu können, sprich Mirabilit in der hohen Hydratstufe zu identifizieren, und somit indirekt Thenardit nachzuweisen. Salzphase Unterscheidungsmerkmale zu Thenardit und Mirabilit Boussingaultit, (NH4)2Mg(SO)4 6H20 keine anormalen Interferenzfarben/schiefe Auslöschung Pikromerit, K2Mg(SO4)2 6H20 keine anormalen Interferenzfarben/schiefe Auslöschung Bloedit, Na2Mg(SO4)2 6H20 alle Indizes>1,48/keine anormalen Interferenzfarben/schiefe Auslöschung/optisch negativ orientiert. Glaserit, K3Na(SO4)2 alle Indizes>1,48/keine anormalen Interferenzfarben/schiefe Auslöschung Arkanit, K2SO4 alle Indizes>1,48/keine anormalen Interferenzfarben Magnesiumformiat, Mg(HCO2)2 2H2O vergleichsweise hohe Doppelbrechung/ keine anormalen Interfernzfarben/ schiefe Auslöschung. Betrachtung von Mischsystemen Im Rahmen der Diplomarbeit wurde der Einfluß von Fremdionen auf das Rekristallisationsverhalten von Thenardit in den Mischsystemen Na+-Ca2+-SO4 2- (Gips und Thenardit) und Na+-SO4 2—Cl- (Thenardit und Halit) untersucht. Mischsystem Na+-Ca2+-SO4 2-: Der Ausfall von Gips erfolgt im Zuge der Rekristallisation entsprechend der geringeren Löslichkeit desselben zuerst. Der charakteristische nadelige Habitus von einzelnen Gipskristallen wie auch von Aggregaten bleibt bestehen. Der Ausfall von Natriumsulfat erfolgt später, das eigentliche Kristallwachstum vollzieht sich merklich schneller. Die Morphologie ist unspezifisch. Mischsystem Na+- SO4 2+ – Cl-: Der Ausfall der beiden Partikelsorten beginnt etwa zeitgleich. Halit mit charakteristischer Morphologie, Natriumsulfat in extrem variierender Gestalt.

Salzphase Unterscheidungsmerkmale zu Gips
Syngenit; K2Ca(SO4)•2H2O alle beobachtbaren Indizes < 1,518
Tachyhydrit; CaMg2Cl6•12H2O zumeist ein beobachtbarer Index < 1,518 / nur parallele und symmetrische Auslöschung
Hydromagnesit; Mg5[OH(CO3)2]2•4H2O ein Index zumeist > 1,53


Röntgendiffraktometrie[Bearbeiten]

Raman-Stektroskopie[Bearbeiten]

DTA/TG[Bearbeiten]

IR-Spektroskopie[Bearbeiten]

Umgang mit Gipsschäden[Bearbeiten]

Salze und Salzschäden im Bild[Bearbeiten]

Am Objekt[Bearbeiten]

Unter dem Polarisationsmikrokop[Bearbeiten]


Unter dem Rasterelektronenmikroskop[Bearbeiten]

Weblinks
[Bearbeiten]


http://webmineral.com/data/Gypsum.shtml

http://www.mindat.org/min-1784.html

http://www.mineralienatlas.de/lexikon/index.php/MineralData?mineral=Gips


Literatur[Bearbeiten]

<bibreferences/>