Sandkasten

Aus Salzwiki
Wechseln zu:Navigation, Suche

<accesscontrol>autor</accesscontrol>

Dieser Sandkasten dient dazu,die Funktion der Extensions zu erproben und den Autoren Beispiele für Anwendungen zu geben, die von diesen dann für Ihre Zwecke kopiert werden können.

Autoren[Bearbeiten]


Husen, Annika[Bearbeiten]


Nicolai, Andreas [Bearbeiten]


Heritage, Alison [Bearbeiten]


Bläuer, Christine [Bearbeiten]


Stadlbauer, Erwin [Bearbeiten]


Wendler, Eberhardt [Bearbeiten]


Siedel, Heiner[Bearbeiten]


Kirsten Linnow[Bearbeiten]


Auras, Michael [Bearbeiten]


Steiger, Michael [Bearbeiten]


Mainusch, Nils [Bearbeiten]


Riedl, Nicole [Bearbeiten]


Laue, Steffen [Bearbeiten]


Müller, Tim [Bearbeiten]


Schwarz, Hans-Jürgen[Bearbeiten]


Heritage, Adrian[Bearbeiten]


Simon, Stefan [Bearbeiten]


Niemeyer, Rolf [Bearbeiten]


Kaufhold, Sandra [Bearbeiten]


Stahlbuhk, Amelie [Bearbeiten]


transclude[Bearbeiten]

Datei:Transclude.bib

EmbedPDF[Bearbeiten]

SVG[Bearbeiten]

Fehler beim Erstellen des Vorschaubildes: Datei fehlt
text


<svgcode width="300" height="200" version="1.1"> <svg version="1.1" id="Layer_1" xmlns="&ns_svg;" xmlns:xlink="&ns_xlink;" width="300" height="200" viewBox="0 0 300 350"> <rect x="0.5" y="0.5" fill="#FFFFFF" stroke="#000000" width="250" height="175"/> </svg> </svgcode>

OGG[Bearbeiten]

[[image:Grand_canyon.ogg.ogv‎]]

Datei:Grand canyon.ogg.ogv

Gallery:


<gallery>file:Capillary_Rise_LS-SS.ogg</gallery>


Template[Bearbeiten]


Bibliography[Bearbeiten]

Die Zitierweise von Literaturhinweisen in SalzWiki geschieht wie folgt: </bibimport>


[Filter fehlt]


Transclusion[Bearbeiten]

[Filter fehlt]


DynamcPageList[Bearbeiten]

Es werden hier als Beispiel alle Seiten zur Kategorie Nitrat aufgelistet.


Übersicht aus dergleichen Tabelle unterschiedlicher Seiten zusammenstellen[Bearbeiten]

Salz Doppelbrechung Brechungsindices Molvolumen Deliqueszenzfeuchte Löslichkeit
Nitrocalcit Δ = 0,039 nx = 1,465
ny = 1,498
nz = 1,504
129,8 cm3/mol 53,06 % 7,726 mol/kg
Nitronatrit Δ = 0,251 no = 1,587
ne = 1,336
37,6 cm3/mol 75,3% 10,347 mol/kg
Nitromagnesit Δ = 0,166 nx = 1,34
ny = 1,506
nz = 1,506
157,7 cm3/mol 55,7% 4,73 mol/kg
Calciumnitrat-Dihydrat 100,1 cm3/mol
Calciumnitrat-Trihydrat 115,0 cm3/mol
Calciumnitrat 66,09 cm3/mol
Niter Δ = 0,171 nx = 1,335
ny = 1,505
nz = 1,506
48,04 cm3/mol 93,7 % 3,108 mol/kg
Nitrammit Δ = 0,219-0,233 nx = 1,411-1,416
ny = 1,605-1,623
nz = 1,630-1,649
46,49 cm3/mol 65% (20°C), 61,8% (25°C) 1787 g/l

CategoryTree[Bearbeiten]

Der Kategorienbaum zur Kategorie "Nitrat".


Terminology[Bearbeiten]

Ein GLossareintarg auf der Seite "terminology" und wie er sich in SalzWiki darstellt:

FTP
File Transport Protocol

Template[Bearbeiten]

Dieses Feld ergibt sich alleine durch die Eingabe des "Templates" (=Vorlage) {{GNU}}.


GNU

Diese Datei wurde unter der GNU-Lizenz für freie Dokumentation veröffentlicht. Es ist erlaubt, die Datei unter den Bedingungen der GNU-Lizenz für freie Dokumentation, Version 1.2 oder einer späteren Version, veröffentlicht von der Free Software Foundation, zu kopieren, zu verbreiten und/oder zu modifizieren. Es gibt keine unveränderlichen Abschnitte, keinen vorderen Umschlagtext und keinen hinteren Umschlagtext.


Cite[Bearbeiten]

Fussnoten

[1]

[2]


Quellen

[3]

[4]

Weblinks

Gleiche Fußnoten öfter!

[5]

[5]

[6]

[5]

 

Test LaTex[Bearbeiten]

Mathematische Formeln etc. werden in LaTex-Syntax eingegeben:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \int \cos\left(x\right)\, \sin\left(x\right) \,\mathrm{d} x = -\frac{\cos\left(2\, x\right)}{4}}


Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_{k=1}^N k^2 }

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \sum_{k\in M,\atop k>5} k }

Kopie von http://de.wikisource.org/wiki/Seite:Carl_Gottfried_Neumann_-_Die_elektrischen_Kräfte_134.jpg zur Kontrolle der TeX-Funktion


Setzt man (ebenso wie früher): Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \cos (\mathrm{D}s, \mathrm{D}s_1) = \Epsilon, \cos (\mathrm{D}s, r) = \Theta, \cos (\mathrm{D}s_1, r) = \Theta_1,\,} wobei die Richtung Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r\,} stets gerechnet sein soll im Sinne Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{D}s_1 \rightarrowtail \mathrm{D}s,\,} so ergiebt sich:


Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (11.)\,} Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} \Theta &= \mathfrak{ AU + BV + CW}, \\ \Theta_1 &= \mathfrak{A_1U + B_1V + C_1 W}, \\ \Epsilon &= \mathfrak{AA_1 + BB_1 + CC_1}; \end{align}\,}


und ferner:

Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (12.)\,} Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \begin{align} d\Theta &= \mathfrak{A}d\mathfrak{U + B} d \mathfrak{V + C} d \mathfrak{W}, \\ d\Theta_1 &= ( \mathfrak{A_1} d \mathfrak{U + B_1} d \mathfrak{V+ C_1} d \mathfrak{W} ) + ( \mathfrak{U} d \mathfrak{A_1+V} d \mathfrak{B_1 + W} d \mathfrak{C_1} ), \\ d\Epsilon &= \mathfrak{A}d\mathfrak{A_1 + B} d \mathfrak{B_1 + C} d \mathfrak{C_1}; \end{align}\,}


denn es ist zu beachten, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{D}s\,} mit dem Axensysteme Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (\mathfrak{x,y,z })\,} in starrer Verbindung steht, mithin Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle d\mathfrak{A}, d\mathfrak{B}, d\mathfrak{C}\,} Null sind.

Die relative Lage des Stromelementes Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle J_1\mathrm{D}s_1\,} in Bezug auf das Drahtelement Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{D}s\,} ist offenbar völlig bestimmt durch Angabe der vier Grössen Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r, \Theta, \Theta_1, \Epsilon.\,} Zufolge der Hypothese (1.) wird daher jene von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle J_1\mathrm{D}s_1\,} während der Zeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle dt\,} in Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{D}s\,} hervorgebrachte elektromotorische Kraft Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathfrak{E}dt\,} proportional sein mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathrm{D}s_1,\,} sonst aber lediglich abhängen können von


Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (13.) \,} Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r, \Theta, \Theta_1, \Epsilon, J_1,\,}


sowie von denjenigen Aenderungen


Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (14.)\,} Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle dr, d\Theta, d\Theta_1, d\Epsilon, dJ_1,\,}


welche diese Grössen erfahren während der Zeit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle dt.\,} Somit folgt:


Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathfrak{E}dt = \mathrm{D}s_1 \cdot F \ (r, dr, \Theta, d\Theta, \Theta_1, d\Theta_1, \Epsilon, d\Epsilon, J_1, dJ_1),\,}


wo Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle F\,} irgend welche Function der beistehenden Argumente vorstellt. Hieraus ergiebt sich durch Entwicklung nach den Grössen (14.) sofort:


Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathfrak{E}dt = \mathrm{D}s_1 \cdot (h + kdr + ld\Theta + md\Theta_1 + nd\Epsilon + OdJ_1),\,}


wo die Coefficienten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h, k, l, m, n, O\,} nur noch abhängig sind von den Vorlage:SperrSchrift Argumenten (13.). Nach der Hypothese (1.) verschwindet Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathfrak{E}dt,\,} sobald die Aenderungen (14.) sämmtlich Null sind; somit folgt Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle h=0;\,} und es wird also:


Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathfrak{E}dt = \mathrm{D}s_1 \ (kdr + ld\Theta + md\Theta_1 + nd\Epsilon + OdJ_1) \,}


Nach der Hypothese (2.) ist Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathfrak{E}dt\,} eine Vorlage:SperrSchrift Function von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle J_1\,} und Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle dJ_1.\,} Hieraus folgt, dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle O\,} von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle J_1\,} unabhängig ist, und dass Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle k, l, m, n\,} proportional mit Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle J_1,\,} im Uebrigen aber ebenfalls von Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle J_1\,} unabhängig sind. Somit ergiebt sich:


Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (15.a) \,} | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle \mathfrak{E}dt =\mathrm{D}s_1 \cdot J_1 \ (Kdr + Ld\Theta + Md\Theta_1 + Nd\Epsilon) + \mathrm{D}s_1 (dJ_1) O,\,}


wo nun gegenwärtig die Coefficienten Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle K, L, M, N, O\,} lediglich abhängen können von den Vorlage:SperrSchrift Argumenten:


Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle (15.b) \,} | Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle r, \Theta, \Theta_1, \Epsilon\,}

Bilder[Bearbeiten]

HJS Ca(NO3)2 101703-4-4.jpg
IMG 7586.JPG



Weblinks[Bearbeiten]

Fußnoten[Bearbeiten]


Literatur[Bearbeiten]

Das Literaturverzeichnis am Ende eines Artikels generiert sich durch die Eingabe von <bibprint/>, dabei ist darauf zu achten, dass vorher mindestens eine Literaturstelle eingefügt wurde, da sonst das ganze Litersturverzeichniss abgebildet wird.


Language: English  • Deutsch

Bezeichnet für ein Salz den Grenzwert, oberhalb dessen dieses Luftfeuchte aufnimmt, bis es sich darin vollständig löst.

Die Deliqueszenzfeuchte beschreibt die Höhe der relativen Luftfeuchte, oberhalb der z. B. ein Salz Feuchtigkeit aus der Luft aufnimmt und in Lösung geht.

File Transport Protocol

Fähigkeit eines Systems, eine Spannung zu erzeugen (Quellenspannung)